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Summary

� The breakdown of plant virus resistance genes is a major issue in agriculture. We investi-

gated whether a set of resistance genes would last longer when stacked into a single plant cul-

tivar (pyramiding) or when deployed individually in regional mosaics (mosaic strategy).
� We modeled the genetic and epidemiological processes shaping the demogenetic dynamics

of viruses under a multilocus gene-for-gene system, from the plant to landscape scales. The

landscape consisted of many fields, was subject to seasonality, and of a reservoir hosting

viruses year-round.
� Strategy performance depended principally on the fitness costs of adaptive mutations, epi-

demic intensity before resistance deployment and landscape connectivity. Mosaics were at

least as good as pyramiding strategies in most production situations tested. Pyramiding strate-

gies performed better only with slowly changing virus reservoir dynamics. Mosaics are more

versatile than pyramiding strategies, and we found that deploying a mosaic of three to five

resistance genes generally provided effective disease control, unless the epidemics were

driven mostly by within-field infections.
� We considered the epidemiological and evolutionary mechanisms underlying the greater

versatility of mosaics in our case study, with a view to providing breeders and growers with

guidance as to the most appropriate deployment strategy.

Introduction

In addition to their impact on ecological dynamics, humans
greatly influence the evolutionary trajectories of many species
worldwide. This influence, which has been documented for many
species, including pests and parasites, results mostly from the
intensification of agriculture and medicine (Palumbi, 2001). The
evolution of resistance to antibiotics in disease-causing bacteria is
a textbook example of microbial adaptations that have become a
major issue for public health (Palumbi, 2001). Similarly, the evo-
lution of resistance to pesticides (insecticides, fungicides or herbi-
cides) is a major issue in agriculture (REX Consortium, 2013).
The breakdown of resistance genes introduced into crop varieties
by plant breeders, particularly major resistance genes (R gene)
conforming to the gene-for-gene (GFG) paradigm (Flor, 1971),
is also a major problem. R genes often remain effective for only a
few cropping seasons, whether they confer protection against
fungi and bacteria (McDonald & Linde, 2002), or against viruses
(Garc�ıa-Arenal & McDonald, 2003), as a result of the rapid
counteradaptation of microbes.

The mechanisms underlying the adaptation of pathogen
populations to xenobiotics and to plant R genes are basically the
same: in both cases, pathogen fitness is reduced, and the

pathogen evolves in response to this selection pressure. If the con-
trol method is applied to a large proportion of the population
and is sustained over time, strong directional selection occurs,
favoring the rapid adaptation of the pathogen (Palumbi, 2001;
REX Consortium, 2013). This development of resistance initially
led to the development of a ‘responsive alternation’ strategy, in
which a molecule is repeatedly used on the whole population
until adapted pathogens emerged, at which point a second
molecule is introduced, and so on (REX Consortium, 2013). In
plant pathology, the strong directional selection regimes resulting
from such approaches have led to ‘boom-and-bust’ cycles. In this
vicious circle, a new cultivar with a single R gene is widely
adopted by farmers because it is effective against a large fraction
of the pathogen population (the ‘boom’). The pathogen then
adapts, leading to the breakdown of resistance and withdrawal of
the cultivar (the ‘bust’). Such ‘boom-and-bust’ cycles are typical
examples of anthropogenic evolution due to directional selection
on a pathogen population when cultivars carrying a single R gene
are widely cultivated over large geographic area dominated by
monocultures of the crop concerned (McDonald & Linde, 2002;
Zhan et al., 2015).

Basic evolutionary mechanisms can be recruited to slow the
pace of pathogen adaptation. There are two broad types of
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strategy available for achieving this end: mosaic/periodic strate-
gies and pyramiding. Mosaic strategies are based on a spatial pat-
tern of application of at least two pesticides or drugs, whereas
periodic strategies involve temporal patterns of application of at
least two pesticides or drugs. For two R genes (R1 and R2)
deployed in an agricultural landscape, the simplest mosaic strat-
egy consists of the repeated planting, over cropping seasons, of
half the field with a cultivar bearing R1 and the other half with a
cultivar bearing R2. Mosaics mobilize evolutionary mechanisms,
as they impose disruptive selection regimes on pathogen popula-
tions, with the selection environment designed to favor different
pathogen genotypes at different locations within the landscape
(McDonald & Linde, 2002; Zhan et al., 2015). Mosaics also
mobilize epidemiological mechanisms of which the well-known
dilution effect (i.e. the reduction of infection efficiency by an
increase in the distance between plants of the same genotype
(Plantegenest et al., 2007), initially described for the use of geno-
type mixtures within fields; Wolfe, 1985; Mundt, 2002). Combi-
nation strategies involve the concomitant use of two or more
pesticides or drugs over space and time. The combination of two
or more resistance genes in a single plant, known as pyramiding,
is common practice in plant breeding. In the simplest pyramid,
two R genes are inserted into a single cultivar (which therefore
bears both R1 and R2), which is then repeatedly planted through-
out the field over cropping seasons. Pyramids combine selection
pressures applied in the same place, at the same time. The main
expected outcome is to decrease the probability that the pathogen
crossed the mutational pathway conferring adaption to each R
gene (Mundt, 1990, 1991; McDonald & Linde, 2002).

Many theoretical studies have considered the best ways to
make strategic use of xenobiotics to delay or prevent adaptation
in a population of pests or pathogens (REX Consortium, 2013),
but only a few have compared such strategies for the management
of R genes (REX Consortium, 2016). As pointed out by Burdon
et al. (2014), there have been very few theoretical assessments of
the most effective strategies for resistance deployment. Zhan et al.
(2015) also highlighted the lack of theoretical studies for the
design of sustainable disease management strategies combining
R-gene rotation ‘with other deployment strategies such as pyra-
miding, regional gene deployment, and mixtures’.

We propose here a model coupling epidemiology and popula-
tion genetics for studies of the best ways of associating susceptible
and resistant cultivars in strategies for controlling epidemics over
several seasons at the landscape scale. This model extends that of
Fabre et al. (2012, 2015) involving a single-locus diallelic GFG
system (i.e. only two pathogen variants and two plant genotypes
were considered) into a multilocus GFG system. This new model
can handle matrices of interaction between more than two
pathogen variants and resistant cultivars. As such, it can provide a
general comparison of a set of mosaic and pyramiding strategies,
ranging from the simplest predefined strategies to more complex
strategies optimized over space and time (Table 1).

Description

Model overview

The model describes plant epidemics during a succession of crop-
ping seasons, for a haploid multilocus di-allelic GFG system. It
can be applied to any plant pathogen for which within- and
between-host dynamics are clearly separated, as is typically the
case for viruses. The dynamics of epidemics are first modeled over
a cropping season, in a landscape composed of many fields, each
field being sown with one of (nc + 2) possible host plant geno-
types: a susceptible cultivar (S ), nc cultivars with monogenic R
(R1;R2; � � � ;Rnc ) and a cultivar pyramiding the nc resistances
(R12...nc ). These nc + 2 plant cultivars interact with nc + 2
pathogen pathotypes (av; v1; v2; � � � ; vnc ; v12:...nc ). Pathotypes are
groups of pathogen genotypes with similar infectivity profiles.
The av pathotype can infect only the S cultivar. Pathotypes vi can
infect only the monogenic cultivar with resistance gene Ri and
the S cultivar. The v12:...nc pathotype is the only pathotype able to
infect all cultivars, including the R12...nc cultivar in which all the
resistance genes are pyramided. Epidemics in successive cropping
seasons are then coupled together through the interaction of the
crop with a virus reservoir compartment, containing diverse wild
plant species that may serve as hosts for the pathogen during the
crop-free period and as a source of inoculum for the initiation of
infections in the next cropping period. The reservoir is selectively
neutral for the pathogen population. The main variables and

Table 1 Names and spatial/temporal characteristics of the deployment strategies compared

Strategy (short name) Cultivar proportion Space Time Proportion at year i Proportion at year i + 1

Mosaic (MoS) Fixed Variable Uniform 50% R1–50% R2 50% R1–50% R2

Pyramiding (PyS) Fixed Uniform Uniform Only R12 Only R12

Mosaic* (MoS*) Optimal Variable Uniform PS;PR1 ; PR2 PS; PR1 ; PR2

Var. mosaic* (vMoS*) Optimal Variable Variable PiS;P
i
R1
; PiR2

Piþ1
S ; Piþ1

R1
; Piþ1

R2

Pyramiding* (PyS*) Optimal Variable Uniform PS;PR12 PS; PR12

Var. pyramiding* (vPyS*) Optimal Variable Variable PiS;P
i
R12

Piþ1
S ; Piþ1

R12

These strategies are illustrated here with two resistance genes and the resulting four cultivars: a susceptible cultivar (S), two monogenic resistant cultivars
R1 and R2, and a resistant cultivar pyramiding the two resistance genes (R12). Simple strategies are the basic predefined strategies. Optimal strategies mini-
mized the damage caused by the pathogen at the landscape scale. Optimal mosaic strategies best combined the proportions of S (PS), R1 (PR1 ) and R2 (PR2 )
cultivars in the landscape, either using the same proportion each year (MoS*), or by varying these proportions from year to year (vMoS*). Similarly, optimal
pyramiding strategies best combined the proportions of S (PS) and R12 (PR12 ) cultivars, either using the same proportion each year (PyS*), or by varying
these proportions from year to year (vPyS*).
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parameters of the model are listed in Table 2. We will first
introduce the model, parameters and hypothesis describing
within-host virus dynamics and then the epidemic dynamics in a
heterogeneous landscape. We will simplify the presentation of
the model here, by focusing on the case nc = 2, in which four
cultivars are considered: an S cultivar, two monogenic cultivars
R1 and R2, and the cultivar pyramiding the two resistances R12.
The generalization to nc ≥ 2 is given in Supporting Information
Notes S1.

Model of within-host virus dynamics

For within-host dynamics, we assume that the pathogen patho-
types coexist in an equilibrium between mutation and selection.
With four cultivars, the coexistence frequencies of the four possi-
bles pathotypes (av, v1, v2, v12) in each host cultivar depend on
m1 (resp. m2), the number of point mutations that the wild-type
virus variant must accumulate in its genome to break down the
qualitative resistance gene R1 (resp. R2); s, the fitness cost induced
by a single mutation; and j, the intensity of epistasis between
mutation. For j = 1, each mutation decreases fitness indepen-
dently, by the same factor (1� s) (no epistasis). When 0 < j < 1,
the mean fitness cost of several mutations is lower than that of s
(antagonistic mutations), whereas j > 1 indicates synergistic
mutations (Wilke & Adami, 2001). For viruses, antagonistic
epistasis has been reported to be common (Wilke et al., 2003;
Sanjuan et al., 2004). The derivation of the coexistence

frequencies required the definition of variants of particular inter-
est in the virus population.

As an example, with m1 = 1 and m2 = 2, we have eight variants
in the virus population as, at each of the mtot =m1 +m2 sites,
each variant does or does not have the nucleotide required to
break down R gene. Each variant sequence can be assigned to one
of the four possible pathotypes (av, v1, v2, v12) (Table 3a). The
fitness of each virus variant in each cultivar is defined with
the parameters s and j (Table 3b). The coexistence frequencies of
the variants and corresponding pathotypes can then be obtained
following Sasaki & Nowak (2003) and Wilke (2005). Formally,
we obtained the mutation-selection balance matrix c ¼
ci;j

� �
1� i;j �ðncþ2Þ

. This matrix is an (nc + 2)9 (nc + 2) matrix in

which rows correspond to the (nc + 2) virus pathotypes
(av, v1, v2, v12) and columns correspond to the (nc + 2) cultivars
S, R1, R2, R12. We refer to Notes S2 for more details on the
derivation of the matrix c.

Model of seasonal epidemics in a heterogeneous landscape

Baseline model in a landscape with only the S cultivar The
model proposed by Fabre et al. (2012, 2015) describes the
dynamics of IS,y(t), the number of plants infected in a field (sown
with the S cultivar) at time t during year y. It takes into account
three routes of infection through dedicated parameters: infection
of the field from the reservoir (at a rate aE), infection between

Table 2 Description of the state variables and parameters of the model

State variables

S Referring to susceptible cultivar
Rj Referring to the j-monogenic resistant cultivar; j 2 {1, 2, ���, nc}
R12...nc Referring to cultivar pyramiding nc monogenic resistances
IV,y Number of infected plants in a field with V-cultivar during year y, V 2 fS;R1;R2; � � � ;Rnc ;R12...ncg
aV,y Rate of infection of the V-cultivar by reservoir during year y, V 2 fS;R1;R2; � � � ;Rnc ;R12...ncg

Parameters included in the numerical experiment
Parameters Description {reference value} Unit {value or range}

nc Number of cultivars with monogenic resistance {2; 3} Number {1;2;3;5}
ny Number of years of resistance deployment {20} Year {10;20;40}
k Characteristic of the pathogen reservoir {0.5} Unitless {0.1;0.5;0.9}
Ωint Epidemic intensity before R deployment Unitless {0.1 to 0.8} by step of 0.05
Ωpfl Landscape connectivity before R deployment Unitless {(0.33, 0.33, 0.33);

(0.9, 0.05, 0.05); (0.05, 0.9, 0.05); (0.05, 0.05, 0.9)}
mj Number of mutations necessary for breakdown Rj {1} Number {1;2}1

s Fitness cost of a single mutation {10�3} Unitless {10�3; 10�2; 10�1}
j Epistasis intensity {1} Unitless {10�3, 0.5, 1, 1.5}

Fixed parameters
Parameters Description {reference value} Unit

nd Duration of the cropping season {120} Day
nf Number of fields in the landscape {400} Field
np Number of plants in a field 104 Plant
l Mutation rate {10�4} Generation�1 nucleotide�1

1Depending on the number of cultivars with monogenic resistance (nc), the possible combinations ofm ¼ m1;m2; . . .;mncð Þ considered for the model simu-
lation are: for nc = 1:m 2 {1; 2}; for nc = 2:m 2 {(1, 1); (1, 2); (2, 2)}; for nc = 3:m 2 {(1, 1, 1); (1, 1, 2); (1, 2, 2); (2, 2, 2)}; for nc = 5:
m 2 {(1, 1, 1, 1, 1); (1, 1, 1, 1, 2); (1, 1, 1, 2, 2); (1, 1, 2, 2, 2); (1, 2, 2, 2, 2); (2, 2, 2, 2, 2)}
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fields (at a rate bc); and infection within a field (at a rate bF).
Using nf to denote the number of fields in the landscape, np to
denote the number of plants in a field and nd to denote the dura-
tion of the cropping season, the model reads:

_IS ;yðt Þ ¼ðnp � IS ;yðt ÞÞð aE
z}|{reservoir

þ bF IS ;yðt Þ
zfflfflfflfflffl}|fflfflfflfflffl{within field

þbC ðnf � 1ÞIS ;yðt ÞÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{between fields

;

for all t 2�0;nd �; y 2 f1; � � � ;nyg;
IS ;yð0Þ ¼0; for all y 2 f1; � � � ;nyg:

8>>>><
>>>>:

Eqn 1

In a landscape containing only the S cultivar, the reservoir load
is constant between seasons and epidemics repeat themselves
identically every year. Integrating system Eqn 1, we define the

area under the disease progress curve (AUDPC) at the landscape
scale as A0 ¼ nf

R nd
0 IS ;yðt Þdt .

Epidemics in an agricultural landscape are intuitively charac-
terized by: the mean epidemic intensity in a field during a season,
defined as Xint ¼ A0

nf npnd
; and the relative importance of the three

routes of infection Xpfl ¼ X1
pfl ;X

2
pfl ; 1� X1

pfl � X2
pfl

� �
(Fabre

et al., 2012). The vector Ωpfl captures the infection profile of
the landscape, which is dependent on the connectivity
between its elements (fields, reservoir). X1

pfl is the proportion
of infections originating from the reservoir, X2

pfl is the proportion
of between-field infections and the remaining,

X3
pfl ¼ 1� X1

pfl � X2
pfl is the proportion of within-field infections.

Mathematically, we have:

X1
pfl ¼

aE
A0

Z nd

0

Z t

0

ðnp � IS ;yðsÞÞdsdt ;

X2
pfl ¼

bC ðnf
� 1Þ

A0

Z nd

0

Z t

0

ðnp � IS ;yðsÞÞIS ;yðsÞdsdt :
Eqn 2

Within-season model in a heterogeneous landscape Now, in
addition to the susceptible cultivar S, let us introduce the three
resistant cultivars R1, R2 and R12. During year y, PV,y is the propor-
tion of fields with cultivar V 2 {S, R1, R2, R12} and aV,y its rate of
infection from the reservoir. The model now reads:

where diag(x) is a diagonal matrix in which the diagonal entries

are given by x, and c ¼ ci;j
� �

1� i;j � 4
is the mutation-selection

balance matrix defined in the previous section.
IV,y(t) is the number of infected plants in a field containing cul-

tivar V at time t and during year y. As each field has a total of np
plants, np - IV,y is the number of healthy plants. Each year, at the
beginning of the epidemic, farmers sow healthy plants, that is, IV,
y(0) = 0 for all y, V. Again, three routes of infection are consid-
ered. First, infections of cultivar V are initiated from the reservoir
at a rate aV,y. Second, by the mass action principle, infections

Table 3 Host–virus interaction matrix and fitness matrix for four plant cultivars (a susceptible cultivar (S), two monogenic cultivars (R1, R2) and a cultivar
pyramiding R1 and R2 genes (R12)) and the eight virus variants considered whenm1 = 1 (resp.m2 = 2) is the number of mutations required for the wild-type
virus to break down the resistance conferred by R1 (resp. R2) gene

Variant sequence Pathotype

(a) (b)

S R1 R2 R12 S R1 R2 R12

000 (av) 1 0 0 0 1 0 0 0
100 (v1) 1 1 0 0 1�s 1 0 0
010 (av) 1 0 0 0 1�s 0 0 0
001 (av) 1 0 0 0 1�s 0 0 0
110 (v1) 1 1 0 0 ð1� sÞ2j 1-s 0 0
011 (v2) 1 0 1 0 ð1� sÞ2j 0 1 0
101 (v1) 1 1 0 0 ð1� sÞ2j 1-s 0 0
111 (v12) 1 1 1 1 ð1� sÞ3j ð1� sÞ2j 1-s 1

Withm1 = 1 andm2 = 2, three nucleotide sites are considered in the viral genome. A mutation at the first site confers the capacity to infect the R1 cultivar.
Two mutations at the second and third sites are required for infection of the R2 cultivar. The pathotype of each virus variant is indicated in brackets after
the binary sequence. (a) The interaction matrix indicates, for each cultivar, whether infection occurs (1) or not (0) for the 8 ¼ 2m1þm2 variants. (b) The fit-
ness matrix is used to derive the relative frequencies of each virus variant in each host cultivar. In addition tom1 andm2, the fitness matrix depends on the
fitness cost of a single mutation (s) and the epistatic interactions between mutations (j)

_IS ;y
_IR1;y

_IR2;y

_IR12;y

2
66664

3
77775¼ diag

np� IS ;y
np� IR1;y

np� IR2;y

np� IR12;y

2
664

3
775

aS ;y
aR1;y
aR2;y
aR12;y

2
664

3
775

zfflfflfflfflffl}|fflfflfflfflffl{reservoir

þbF

IS ;y
IR1;y

IR2;y

IR12;y

2
664

3
775

zfflfflfflffl}|fflfflfflffl{withinfield

þ

8>>>>>><
>>>>>>:

bC

PS ;ynf �1 PR1;ynf PR2;ynf PR12;ynf
PS ;ynf ðc21þc41Þ PR1;ynf �1 PR2;ynf c43 PR12;ynf
PS ;ynf ðc31þc41Þ PR1;ynf c42 PR2;ynf �1 PR12;ynf

PS ;ynf c41 PR1;ynf c42 PR2;ynf c43 PR12;ynf �1

2
664

3
775

IS ;y
IR1;y
IR2;y
IR12;y

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
between fields

9>>>>>>=
>>>>>>;
;

Eqn 3
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occur from sources in the same field (and thus of the same culti-
var) at rate bF. Lastly, infections occur from infected plants in
any other field at rate bc. More precisely, this term counts all the
infection sources in all remote fields and weights the force of
these sources by the coexistence frequencies of the pathotypes
able to infect cultivar V.

The genetic structure of the pathogen population can be
derived by calculating the proportion of the pathotype fre-
quencies at time t during year y as 1

Iy ðt Þ c � IS ;yðt Þ; IR1;yðt Þ;
�

IR2;yðt Þ; IR12;yðt ÞÞT , wherein Iy(t ) = IS,y(t ) + IR12;,y(t ) + IR12;,y(t ) +
IR12;y(t ).

Between-season model Epidemics in successive cropping seasons
are coupled to each other through the interaction of the crop with
a reservoir compartment selectively neutral for the pathogen popu-
lation. Assuming that the migration of propagules of each patho-
type from the crop into the reservoir is proportional to the
intensities of the overall epidemic in each cultivar during year y,
AV ;y ¼ nf PV ;y

R nd
0 IV ;yðt Þdt (relative to the overall epidemic

intensity of a landscape with only S cultivar, A0), a single additional
parameter k2 ]0, 1[ was required to control the renewal of virus
load. High values of k characterize a reservoir in which the preva-
lence of the virus pathotypes changes rapidly as a result of short
host life spans and small reservoir size. Low values of k characterize
a roughly stable reservoir in which virus dynamics displays marginal
dependence on epidemic dynamics in the crops. Therefore, for all
y2 {2, . . ., ny} the interseason dynamics of the viral load of the
reservoir is defined by:

aS ;y
aR1;y

aR2;y

aR12;y

2
664

3
775 ¼ ð1� kÞ

aS ;y�1

aR1;y�1

aR2;y�1

aR12;y�1

2
664

3
775

þ k
aE
A0

1 1 1 1
c21 þ c41 1 c43 1
c31 þ c41 c42 1 1

c41 c42 c43 1

2
664

3
775

AS ;y�1

AR1;y�1

AR2;y�1

AR12;y�1

2
664

3
775:

Eqn 4

Initially, before the deployment of resistant cultivars (i.e.
at year y = 1), the prevalence of the pathotypes in the reser-
voir depends on their coexistence frequencies in fields
planted with the S cultivar. Thus, ðaS ;1; aR1;1; aR2;1; aR12;1Þ
¼ aE 1; c21 þ c41; c31 þ c41; c41ð Þ.

Model analysis

Performance of deployment strategies We aimed to compare
the performance of a set of deployment strategies defined in
Table 1. The AUDPC, previously defined as AV,y, is used as a
proxy of yield losses caused by viruses. The performance of a
given strategy is then estimated by assessing the damage caused
by the pathogen during ny years in the entire landscape relative to
the damage obtained when only the S cultivar is grown (Fabre
et al., 2015). For example, a relative damage of 80% means that
strategy P decreases the epidemic damage by: 100–80% = 20%.

Formally, a deployment strategy P ¼ PV ;1; . . .;
�

PV ;ny ÞV 2fS ;R1;R2;R12g is the time series of the proportion of fields

sown with the different cultivars each year in the landscape. Its
performance is

DðP ; dÞ ¼ 100

nyA0
�
Xny
y¼1

X
V 2fS ;R1;R2;R12g

AV ;yðPV ;y ; dÞ; Eqn 5

with the natural condition
P

V 2fS ;R1;R2;R12g
PV ;y ¼ 1 for all

y 2 {1, . . ., ny}; where d ¼ m; s; j;Xint ;Xpfl ; k; ny
� �

is a given

set of the parameters of interest. Below, the strategy P is consid-
ered as an element of the strategies set {MoS, PyS,
MoS*, vMoS*, PyS*, vPyS*} (Table 1).

In addition, we defined the difference in performance between
two strategies P1 and P2 as D P1; P2ð Þ ¼ DðP1; dÞ � DðP2; dÞ
(corresponding to the percentage difference in damage between
the two strategies). For example, a positive value of 10% indicates
that strategy P1 is 10% more beneficial than strategy P2. Negative
values indicate that P2 outperforms P1.

Numerical experiment The model was implemented in MATLAB

and analyzed using the R software (www.r-project.org). Ordinary
differential equations were solved using the ODE45 MATLAB solver.
The model was explored in a large number of vector parameters
d representative of a wide range of production situations (i.e. the
set of physical, biological and socioeconomic factors determining
agricultural production). Optimal strategies were identified with
the MATLAB nonlinear programming solver FMINCON for each d
considered thereafter. Sensitivity analyses (Saltelli et al., 2008)
were performed to estimate the relative importance of the model
parameters of interest d ¼ m; s; j;Xint ;Xpfl ; k; ny

� �
for the yield

performance D(P, d) of optimal strategies, by running the model
over a full factorial design with 19 440 parameter combinations
(nc = 2, deployment of two R genes) and 25 920 combinations
(nc = 3, deployment of three R genes) (Table 2). Sensitivity
indices were calculated as described by Fabre et al. (2015). Regres-
sion trees were built with the function RPART (R package ‘PARTY’)
to analyze the difference in performance D (Py,MoS) and D
(MoS, MoS*). A regression tree was fitted to analyze the differ-
ence in performance D (PyS, MoS) obtained with two and three
R genes over 45 360 parameter combinations (19 440 for nc = 2
plus 25 920 for nc = 3). In this analysis, D (PyS*, MoS*) was
used as an illustrative variable.

Sensitivity analysis and regression trees were also used to assess
the effect of increasing the number of R cultivars in mosaic strate-
gies. Eight parameter were considered: nc, mjnc (m and nc are
nested factors), s, j, Ωint , Ωpfl , k and ny. A classification tree for
D (MoS, MoS*) over a factorial design with 97 200 parameter
combinations (i.e. 12 960 (nc = 1) + 19 440 (nc = 2) + 25 920
(nc = 3) + 38 880 (nc = 5)) was fitted. Sensitivity analyses were
also performed to estimate the relative importance of these eight
parameters for the yield performance of simple and optimal
mosaic strategies on a subset of 25 920 parameter combinations.
Finally, a regression tree for D (MoS*, vMoS*) was fitted on a
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subset of previous parameters combinations, as the optimization
procedure was highly time-consuming for variable strategies. In
total, we considered 8640 parameter combinations by setting
ny = 20 and mtot = nc (meaning that a single mutation is needed
to break down the resistance conferred by a particular R gene).

Results

Typical epidemic dynamics simulated with the model

In the model, the pathogen pathotypes coexist in equilibrium
between mutation and selection within their host plants. This is
illustrated for the four pathotypes in our follow-up example where,
the wild-type virus variant must accumulate m1 = 1 (resp. m2 = 2)
mutations in its genome to break down the resistance gene R1
(resp. R2) (Fig. 1, Tables S1 and S2 for other mutational path-
ways). In agreement with the multilocus GFG system (Table 3a),
coexistence frequencies are firstly determined by plant genotypes
(Fig. 1a). The fitness costs of mutations have a large effect. In an S
cultivar, 10% of the variants belong to the resistance-breaking
pathotypes v1, v2, v12 for s = 10

�3, < 2% belong to these pathotypes
for s = 0.01 and only 1& of them for s = 0.1 (Fig. 1b). Coexistence
frequencies also depend on the epistasis parameter j for pathotypes
bearing at least two mutations in their genome. Its effect is
strongest for the lowest mutation fitness costs (< 10�2) (Fig. 1c).

The model describes epidemics during successive cropping sea-
sons in an agricultural landscape with connectivity Ωpfl. In the
baseline situation, all the fields are sown with the S cultivar and
epidemics repeat themselves identically in each field and every
year with mean incidence Ωint (Fig. 2a). Now, let us introduce
two resistant cultivars (characterized by m1 = 1, m2 = 2 and
s = 0.1) and deploy the corresponding optimal mosaic strategy
(MoS*) by sowing 16% of the fields with the S cultivar, 31%

with cultivar R1 and 53% with cultivar R2. Initially, the av patho-
type is nearly fixed in the pathogen population but other patho-
types are generated by recurrent mutation according to their
coexistence frequencies in the S cultivar (Fig. 2c). In a first stage,
the overall epidemic dynamics is decreasing from one season to
the next (Fig. 2a) as a result, of: the low epidemics occurring in
the fields sown with R1 and R2 (as initially their rates of infection
from the reservoir are very low); and the concomitant slowing
down of epidemics in the fields sown with the S cultivar (corre-
sponding to the reduction of the rate of infection of the S cultivar
from the reservoir) (Fig. 2b). At the same time, this process is
counteracted by the selection of pathotypes adapted to R1 and R2
(Fig. 2c). This result, in a second stage, in an increasing in the
overall epidemic dynamics after 10 seasons (Fig. 2a). The area
under epidemic dynamics, a proxy of the yield losses caused by
virus, was used to compare the performance of the strategies.

Comparison of the different strategies for the deployment
of two and three resistance genes

We compared the performance of four deployment strategies:
MoS, PyS, MoS* and PyS* (Table 1). With two resistances
genes, the simple mosaic strategy (MoS) consists of sowing 50%
of the fields with the cultivar R1 and 50% with R2 in each year,
whereas the simple pyramiding strategy (PyS) consists in sowing
100% of fields with the cultivar R12 in each year. The optimal
uniform mosaic strategy (MoS*) was based on the best combina-
tion of proportions of fields sown with the cultivars S, R1 and R2,
whereas the optimal uniform pyramiding strategy (PyS*) best
combined the proportions of S and R12.

Sensitivity analyses of strategy performance The sensitivity of
the relative damage to the seven main model parameters (Table 2)
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Fig. 1 Coexistence frequencies of the four virus pathotypes considered (av, v1, v2, v12) with two resistance genes, R1 and R2. A situation where the virus
must accumulate one (resp. two) mutation(s) in its genome to break down the resistance conferred by R1 (resp. R2) is considered. (a) Effect of the plant
cultivar on the coexistence frequencies of the four pathotypes for a fitness cost s = 10�3. (b) Effect of the fitness cost of a single mutation s on the
coexistence frequencies of the four virus pathotypes in an S cultivar. An embedded zoom graph is provided for frequencies ranging from 0.88 to 1. (c)
Effect of the intensity of epistasis j on the coexistence frequency of the pathotype v12 in a S cultivar as a function of the fitness cost of a single mutation s.
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was assessed independently for the optimal strategies with two
and three resistance genes. Three parameters describe the within-
host interaction between the virus and the resistance genes consid-
ered: the total number of mutations required for the virus to
break down the resistance conferred by the nc genes (mtot), the fit-
ness cost of a single mutation (s) and the intensity of epistasis
between mutations (j). Three other parameters describe the epi-
demiological dynamics in the landscape before resistance deploy-
ment: the mean epidemic intensity in a field during a cropping
season (Ωint), the functional connectivity of the landscape (Ωpf l)
and the rate of reservoir renewal (k). The last parameter (ny) is
the number of years during which resistance has been deployed.

The overall picture was very similar for two and three R genes,
with sensitivity analyses highlighting the importance of the same
two main parameters (Ωint and Ωpf l) and secondarily the

importance of s for all strategies (Table S3). The sum of the main
indices of Ωint and Ωpf l (revealing individual effects) range from
64% (MoS* with three R genes) to 72% (PyS* with two R
genes). The interaction between Ωint and Ωpf l had a marked
effect on the PyS* strategy (15% and 18% with two and three
genes, respectively), but above all for the MoS* strategies (20%
and 30% with two and three R genes, respectively). The variance
explained by Ωint, Ωpf l, s and their mutual interactions ranges
from 90% (PyS* with three R genes) to at least 95% (MoS* with
two and three R genes). By contrast, the four remaining parame-
ters had only a marginal impact on strategy performance, with
main effects ≤ 1%.

Effect of the three main parameters on strategy perfor-
mance As the main parameters of the sensitivity analysis are
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Fig. 2 Typical epidemics simulated by the model. Epidemics are compared between the baseline epidemiological context defined by Ωpfl = (0.05, 0.05, 0.9)
and Ωint = 0.35 in a landscape with only the S cultivar and the same landscape where the optimal mosaic strategy (MoS*) obtained with two resistant genes
(characterized bym1 = 1,m2 = 2 and s = 0.1) is deployed. Other parameters are set to their reference values. The MoS* strategy consists here in sowing
16% of the fields with the S cultivar, 31% with cultivar R1 and 53% with cultivar R2. (a) Proportion of infected plants (regardless of their cultivars) in the
landscape with only the S cultivar and with the MoS* strategy deployed during 20 cropping seasons. (b) Interseason dynamics of the rates of infection
from the reservoir in the baseline context (aE) and with the MoS* strategy (aS,y, aR1,y, aR2,y, aR12,y). (c) Dynamics of the pathotype frequencies during the
cropping seasons with the MoS* strategy.
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Ωint, Ωpf l and s, we illustrate the performance of the strategies by
plotting the relative damage as a function of Ωint 2 [0.1, 0.8] for
two mutation fitness costs (low, s = 10�3, and high, s = 0.1) in
three landscapes differing in terms of the predominant route of
infection. We illustrate the case of three R genes (Fig. 3). The

corresponding cultivar landscapes underlying the MoS* and
PyS* strategies (i.e. proportion of fields sown with each cultivar)
and genetic structures of pathogen population (i.e. mean propor-
tion of the pathotypes over the cropping seasons) are illustrated
in Fig. S1. Overall, the simple pyramiding strategy (PyS) was

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 Damage reduction achieved with mosaic and pyramiding strategies with three resistances genes. The MoS strategy consists of sowing one-third of
the fields with each monogenic cultivar R1, R2 and R3, each year. The PyS strategy consists of sowing 100% of fields with cultivar R123 each year. The
MoS* strategy involved using the proportions of fields sown with the cultivars S, R1, R2 and R3, minimizing pathogen damage. The PyS* strategy involved
using the best combination of proportions of S and R123. (a–c) Effect of the fitness costs of mutations s (left s = 10�3, right s = 0.1) and of epidemic intensity
(Ωint) on damage (relative to the damage before resistance deployment) in a landscape in which 90% of infections are within-field infections. (d–f) As for
(a–c) but for a landscape in which 90% of infections are between-field infections. (g–i) As for (a–c) but for a landscape in which 90% of infections are
initated from the reservoir. Other parameters are set to their reference values. In the landscape drawings (a, d, g) arrows symbolize routes of infection
between infected plants (in red) and a focal healthy plant (in green). The dominant route is underlined in red.
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often the worst strategy, particularly for the lowest mutation fit-
ness costs. The optimal pyramiding strategy (PyS*) was the next
worst strategy. By contrast, the mosaic strategies MoS and MoS*
have similar performances, both better than those of the pyra-
miding strategies.

More precisely, in landscapes dominated by within-field infec-
tions (Fig. 3a), none of the strategies gave effective disease control
(defined here, arbitrarily, as relative damage ≤ 5%) for the lowest
mutation fitness costs and most epidemic intensities (s = 10�3

and Ωint > 0.2; Fig. 3b). However, mosaic strategies always per-
formed significantly better than pyramiding strategies. By con-
trast, for the highest mutation fitness costs (s = 0.1; Fig. 3c), all
the strategies performed mostly similarly, giving effective disease
control for the lowest epidemic intensities (Ωint ≤ 0.35).

When between-field infections predominate (Fig. 3d), the dif-
ference in performance between PyS, on the one hand, and PyS*,
MoS and MoS*, on the other hand, was much greater, whatever
the mutation fitness cost. For lower costs, PyS never gave effective
disease control, whereas PyS* kept the relative damage to < 5%
for Ωint ≤ 0.55 and MoS and MoS* kept the relative damage to
< 5% for Ωint ≤ 0.7 (Fig. 3e). Higher fitness costs (Fig. 3f ) differ-
entiated between MoS and MoS* in terms of performance for
higher epidemic intensities (> 0.75), with MoS* giving effective
disease control for almost all epidemic intensities. Higher fitness
costs also improved the performance of PyS, which had a relative
damage of < 5% for Ωint ≤ 0.3.

In landscapes dominated by infections from the reservoir
(Fig. 3g), the disease was fully controlled by all strategies at high
fitness cost (Fig. 3i). However, this control was lost in situations
of lower fitness cost (s = 10�3; Fig. 3h) for Ωint ≤ 0.5. For higher
intensities, MoS and MoS* performed similarly well, and both
were much better than PyS*. Again, the PyS strategy had the
worst performance.

The results are nearly similar with strategies combining two R
genes. However, the MoS and PyS* strategies frequently had
quite similar performances. The equivalent of Figs 3 and S1 are
provided in Figs S2 and S3.

Mosaic strategies are much more versatile than pyramiding
strategies

The differences in performance between mosaic and pyramiding
strategies (D (PyS, MoS) and D (PyS*, MoS*) for simple and
optimal strategies, respectively) were explored over 45 360 pro-
duction situations. The analysis covered a wide range of physi-
cal9 biological 9 socioeconomic factor combinations typical of
agricultural production (Table 2). Overall, mosaic strategies per-
formed at least as well as pyramiding strategies in approximately
92% of the production situations tested. More precisely, MoS*
outperformed PyS* (D (PyS*, MoS*)> 2%) in 34% of the pro-
duction situations and MoS* and PyS* performed approximately
similarly (�2% ≤D (PyS*, MoS*) ≤ 2%) in 59% of the produc-
tion situations. Similarly, simple MoS outperformed PyS in 48%
of the production situations tested, whereas these two strategies
performed similarly well in 43% of production situations.
Finally, pyramiding strategies were more beneficial than mosaic

strategies in 7% and 9% of cases for the optimal and simple
strategies, respectively.

A regression tree was constructed to identify parameter combi-
nations explaining the difference in performance between strate-
gies (Fig. 4). This tree was built with D (PyS, MoS), with D
(PyS*, MoS*) used as an illustrative variable. The parameters
identified were the same as those revealed by the sensitivity analy-
sis (Ωint, Ωpfl and s) plus k and ny. The tree mainly contrasts
landscapes dominated by between-field infections (right branch
of the tree) with other patterns of functional connectivity. MoS
strategies are much more beneficial than PyS when between-field
infections predominate. Optimal MoS* strategies were also better
for higher epidemic intensities (Ωint ≥ 0.32). For other connectiv-
ity patterns, MoS and MoS* tended to be more beneficial than
PyS and PyS* for reservoirs displaying moderately rapid or rapid
renewal of their viral loads (k ≥ 0.5), especially for the lowest
range of fitness cost (s ≤ 0.01) when long-term deployment strate-
gies are planned (ny = 40 yr). By contrast, the differences in per-
formance reduce for reservoirs displaying only slow renewal of
their viral load (k = 0.1) and for shorter-term deployment strate-
gies (ny ≤ 20 yr) but remain (on average) in favor of mosaics
strategies.

Effect of cultivar diversity on disease control

As mosaic strategies are highly versatile, we explored the effect of
the number of R cultivars present in the mosaic strategy on dis-
ease control. The levels of disease control achieved with optimal
or simple mosaic strategies were mostly determined by the same
two factors highlighted earlier (Ωint, Ωpf l) plus cultivar diversity
(nc). These three factors alone explained 67% of the relative dam-
age variability obtained (for both MoS and MoS*). These figures
rose to 91% (MoS) and 94% (MoS*) if mutual second- and
third-order interactions were taken into account. The fourth most
important was far behind the fitness cost of a single mutation (s).

When the number of R cultivars was increased from one to
five, optimal mosaic strategies largely improved disease control,
particularly in landscapes dominated by between-field infections
or infections from the reservoir, and when mutations breaking
down the resistance conferred by R genes had low fitness costs
(Fig. 5e,h). With higher fitness costs, a high level of disease con-
trol was already achieved with mosaics of three R cultivars
(Fig. 5f,i), and little additional benefit could therefore be gained
from increasing the number of R genes in the mosaic strategy.
Conversely, when within-field infections predominated, disease
remained difficult to control even with optimal mosaics of five R
cultivars. Increasing R-gene diversity clearly increased the efficacy
of control, but, even with high fitness costs of mutations, an opti-
mal mosaic of five R cultivars yielded effective disease control (i.e.
relative damage ≤ 5%) only for epidemic intensities ≤ 0.4
(Fig. 5c).

Simple (MoS) and optimal mosaic (MoS*) strategies including
three or five R cultivars performed similarly (performance differ-
ence D (MoS, MoS*) ≤ 2%) in 94% of the production situations
tested (Fig. S4). With only two R genes, optimal mosaics gener-
ally outperformed simple mosaics for the highest range of
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epidemic intensities (Ωint ≥ 0.6) and when the relative contribu-
tion of between-field infections was ≥ 33% (Fig. S4). Finally,
with a single R cultivar, MoS* strategies outperformed simple
mosaics in 65% of the production situations tested.

Additional benefit of vMoS* over MoS* and MoS

The optimal uniform mosaic strategy (MoS*) was extended to
obtain the optimal variable mosaic strategy (vMoS*), in which
the proportions of the cultivars can change from year to year
(Table 1). D (MoS*, vMoS*), the percentage additional yield of
the vMoS* strategy over MoS*, was ≤ 2% in 76% of the 8640
production situations simulated. Additional yield was substantial
only for production situations in which within-field infections
predominated, especially when the reservoirs rapidly renew their
viral load k = 0.9 (Fig. S5). In this case, the mean value of D
(MoS*, vMoS*) was approximately 6% when Ωint < 0.325 and
increased to 21% (resp. 39%) when Ωint ≥ 0.325 with strategies
including one or two (resp. three or five) R cultivars.

Discussion

We addressed the question of whether a set of R genes would last
longer when stacked into the same plant cultivar or when
deployed individually in landscape mosaics. By sharp contrast
with the many studies dealing with the best way to combine
pharmaceutical drugs or pesticides (REX Consortium, 2013),
this question has been little investigated in studies dealing with
the durability of plant resistance (REX Consortium, 2016). In a
recent review, Burdon et al. (2014) noted that ‘what is lacking are
careful assessments, using ecological and evolutionary principles,
of the most effective disease resistance deployment strategies that
will maximize both the short-term and the longer-term evolu-
tionary benefits of different combination strategies’. One of the
main reasons for this is that most theoretical studies dealing with
resistance durability consider only one susceptible and one resis-
tant cultivar e.g. (van den Bosch & Gilligan, 2003; Skelsey et al.,
2010; Fabre et al., 2012, 2015; Lo Iacono et al., 2013; Papa€ıx
et al., 2013, 2014a,b), making it impossible to compare strategies
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Fig. 4 Regression tree for the difference in performance between mosaic and pyramiding strategies obtained with two and three monogenic resistances,
for 45 360 production situations. Production situations correspond to a full-factorial design of the eight main model parameters (Table 2). Positive values
indicate that the mosaic performed better than the pyramiding strategies. For each node, the number of production situations is indicated, together with
the means for D (PyS, MoS) (in green, simple strategies) and D (PyS*, MoS*) (in red, optimal strategies). Box plots show the 5%, 25%, 50%, 75% and
95% percentiles of the distribution of D (PyS*, MoS*) and D (PyS, MoS). The factors identified by the tree are the intensity of the epidemic before
deployment (Ωint), landscape connectivity (Ωpf l), the fitness cost of a single mutation (s), the reservoir renewal rate (k) and the number of years of
resistance deployment (ny).
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deploying more than one resistance gene. We extended the model
proposed by Fabre et al. (2012, 2015) for a single-locus di-allelic
gene-for-gene system to a multilocus system involving an interac-
tion matrix for at least three pathogen variants and as many resis-
tant cultivars. The model links the genetic and epidemiological
processes, shaping, at the within- and between-host scales, the
demogenetic dynamics of a plant virus in a landscape composed

of many fields subject to seasonality and with a reservoir contain-
ing viruses year-round.

Mosaic strategies are more versatile

We show here that mosaic strategies are much more versatile than
pyramiding strategies. At the landscape scale, mosaic strategies

(a)

(d) (e) (f)

(g) (h) (i)

(b) (c)

Fig. 5 Damage reduction achieved by deploying an increasing number of one, two, three and five monogenic resistant cultivars in optimal mosaic
strategies (MoS*). (a–c) Effect of the fitness costs of mutations s (left s = 10�3, right s = 0.1) and of epidemic intensity (Ωint) on the epidemic damage
(relative to the damage before resistance deployment) in a landscape in which 90% of infections are within-field infections. (d–f) As for (a–c) but for a
landscape in which 90% of infections are between-field infections. (g–i) As for (a–c) but for a landscape in which 90% of infections are initiated from the
reservoir. Other parameters are set to their reference values. In the landscape drawings (a, d, g) arrows symbolize routes of infection between infected
plants (in red) and a focal healthy plant (in green). The dominant route is underlined in red.
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were at least as good as pyramiding strategies in about 92% of
the production situations tested. Our model assumed that the vir-
ulence-causing viral mutations at different loci were independent,
and the R genes had not been deployed before (i.e. no prior
pathogen adaptation in the sense that initially the avirulent
pathotype is nearly fixed), two conditions favoring the durability
of R gene pyramids (Mundt, 1990; REX Consortium, 2013,
2016; Brown, 2015). Theoretical studies of coevolution under
multilocus gene-for-gene models in natural plant–pathogen sys-
tems have already suggested that the use of mixtures of single-
resistance gene genotypes is better than the use of multiple resis-
tance alleles in the same cultivar (Sasaki, 2000; Segarra, 2005).
These studies, based on population genetics theory, ignored the
epidemiological dynamics and considered only natural coevolu-
tion, which is disrupted by agriculture. To our knowledge, only
Sapoukhina et al. (2009) have linked epidemiological and popu-
lation genetics dynamics to compare mosaic and pyramiding
strategies in an agricultural context. They demonstrated that ran-
dom mixtures of cultivars with monogenic resistance controlled
epidemics as efficiently as the pyramiding of R genes. Their anal-
ysis was restricted to a few epidemiological contexts and could
not disentangle the roles of epidemic intensity and landscape
connectivity. These findings, and our own results, contrast with
the review of REX Consortium (2013) suggesting that combina-
tions of xenobiotics (equivalent to pyramiding in our case study)
usually outperform mosaics. In seven theoretical studies compar-
ing combinations and mosaics, they found that the combination
outperformed the mosaic in five studies, the mosaic was better
than the combination in one study, and the result depended on
the model parameters in the remaining study. Insightful compar-
isons are difficult, as model structures and hypotheses, and the
criteria used to compare strategies differ considerably between
these studies.

Mosaic strategies outperform pyramiding strategies when:
between-field infections predominate, epidemic intensities (be-
fore R cultivar deployment) are high, and the fitness costs associ-
ated with adaptive mutations in the virus are low (Fig. 4). Simple
mosaics operate in two principal ways. First, they operate
through an epidemiological mechanism analogous to the dilution
effect (Plantegenest et al., 2007), a mechanism initially described
in cultivar mixtures within fields (Wolfe, 1985; Mundt, 2002).
Note that the other two mechanisms put forward by Wolfe
(1985) to explain the lower levels of disease in mixtures do not
operate in our model: barrier effects resulting from differences in
plant architecture between resistant and susceptible cultivars and
induced resistance. In our setting, the higher the frequency of
between-field infection events and epidemic intensities, the
higher the dilution effect. The second principle through which
mosaics operate is an evolutionary mechanism, known as disrup-
tive selection (i.e. mosaics create a selection environment favoring
different pathogen genotypes at different places; McDonald &
Linde, 2002; Zhan et al., 2015). The intensity of disruptive selec-
tion is determined by tradeoffs in the adaptation of the different
virus variants to the different hosts, a factor classically highlighted
by theoretical works on adaptation in heterogeneous environ-
ments (e.g. Gandon 2002, Ravign�e et al. 2009, D�ebarre &

Gandon 2010). As fitness costs increase, so does the disruptive
selection imposed on the pathogen population. Fitness costs are
not systematic, but they do occur in many plant–pathogen inter-
actions (Zhan et al., 2015), particularly those involving plant
viruses (Sacristan & Garcia-Arenal, 2008), in which they are
often high (Carrasco et al., 2007; Sanjuan, 2010; Fraile et al.,
2011; Garc�ıa-Arenal & Fraile, 2013). The other two parameters
determining these tradeoffs, the number of mutations necessary
for R breakdown (m) and the nature and intensity of epistasis
between adaptive mutations (j) had marginal effects on the per-
formance of strategies at landscape scale. Brown (2015) recently
suggested that synergy between the effects of costly mutations
(j > 1 in our setting; i.e. fitness penalty is an accelerating func-
tion of the number of mutations) can theoretically account for
the higher durability of R gene pyramids. This parameter does
not appear to be determining in our model, as its effect remained
smaller than that of s and vanished as soon as s ≥ 59 10�3

(Fig. 1c).
Pyramiding strategies outperformed mosaics in one particular

specific context: low values of k characterizing virus dynamics in
the reservoir largely uncoupled from virus dynamics in the crops.
This situation occurs, for example, when the host reservoir is
much larger than that of the cultivated compartment, or if the
reservoir compartment is somewhat separated from the cultivated
compartment of the landscape. Unlike simple mosaic strategies,
simple pyramiding strategies have only one mode of operation, at
the very first step in the emergence of a multi-virulent variant.
Pyramids operate by reducing the probability of multivirulent
variants emerging and being transmitted. According to the
model, the more costly and complex the mutational pathways
leading to multivirulence, the less likely they are to be transmit-
ted. Simple pyramids involve no dilution effect and exert no dis-
ruptive selection. With an optimal pyramid, the use of the S
cultivar makes it possible to mobilize these mechanisms to at least
some extent. Consistent with these mechanisms, we found that a
simple mosaic strategy outperformed the simple pyramid strategy
in 48% of the production situations tested and performed simi-
larly well in 43% of production situations. However, the optimal
mosaic strategy outperformed the optimal pyramid strategy in
only 34% of production situations and performed similarly in
59%.

The level of diversity in the mosaic strategy

The genetic diversity of hosts limits the spread of epidemics in a
wide range of conditions, in both natural (Ostfeld & Keesing,
2012) and managed ecosystems (Mundt, 2002; Garrett et al.,
2009). The number of R components required to obtain efficient
disease control has been largely overlooked. To our knowledge,
only Mikaberidze et al. (2015) have investigated the dependence
of the optimal number of cultivars in mixtures on the degree of
host specialization and pathogen transmission rate. For markedly
specialized pathogens, mimicking GFG interactions with high fit-
ness costs, three-component mixtures effectively achieve a relative
damage of ≤ 5% with low to intermediate transmission rates. By
contrast, 10–15 components are required for pathogens with
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high transmission rates (Mikaberidze et al., 2015). We obtained
similar results, despite the differences in our model structure.
Three to five R genes were sufficient in diverse production situa-
tions in which between-field infections or infections from the
reservoir predominated (Fig. 5d–i). Our results suggest that
much larger numbers of components would be needed at high
epidemic intensities in landscapes dominated by within-field
infections, as the additional disease control increased very slowly
with diversity (Fig. 5a–c). This situation is likely to be common,
as pathogen dispersal is often characterized by a highly local dis-
persal component and rare long-distance dispersal component
(Wingen et al., 2013). Thus, for successful control, the increase
in cultivar diversity should be accompanied by the planting of
crops in smaller fields (i.e. increasing the number of plant geno-
type units and decreasing their unit area, as pointed out by
Mundt, 1988).

Simple (MoS) and optimal (MoS*) mosaic strategies including
three or five R cultivars performed similarly well (meaning that
their performance difference was ≤ 2% in 94% of the produc-
tions situations tested; Fig. S4). This is important in practice, as
simple strategies are defined a priori, regardless of the specific
production situation. All control approaches must be practical
and economically attractive if they are to be adopted (Zhan et al.,
2015). We assumed that all R genes were identical in terms of the
number of adaptive mutations, fitness cost and epistasis level.
However, if fitness costs differ between two R genes, then the R
gene imposing the higher fitness cost should probably be pre-
ferred, to optimize disease control. The a priori design of mosaic
strategies when the fitness costs of adaptive mutations in the virus
vary according to the R gene used should be investigated further.

Main model hypothesis and limitations

The model ignores recombination in the virus genome, a mecha-
nism likely to disadvantage pyramid strategies (Burdon et al.,
2014; Mundt, 2014; Brown, 2015) as it can combine adaptive
mutations present in different virus variants. The importance of
this mechanism is unclear. In particular, recombination probably
has only a minor effect on the rate of acquisition of adaptive
mutations in populations with effective population sizes (Ne) of
1000 or less (Althaus & Bonhoeffer, 2005), as adaptive muta-
tions are typically sequentially fixed. Viruses often have very small
effective population sizes because of the bottlenecks occurring at
many steps of the virus cycle in the plant (Guti�errez et al., 2012).
In this respect, like most models dealing with the evolution of
resistance to xenobiotics (REX Consortium, 2010), the model
assumed an infinite pathogen population size. Consequently,
even if the avirulent pathotype is nearly fixed, all other virulence
alleles are assumed to be present initially according to the muta-
tion-selection balance hypothesis. In real populations, some com-
binations of virulence alleles may be missing as a result of the low
Ne. The current model thus ignores the effect of genetic drift on
pathogen evolution within and between plants; and the time
required for mutations to occur, a factor favoring pyramids.
Finally, mutation fitness costs are assumed to be constant, imply-
ing an absence of compensatory mutation in the virus genome

and that the resistance-breaking mutants revert to their initial fre-
quencies after removal of the R gene. This is consistent with
observations (or inferences) for some viruses (Harrison, 2002;
Janzac et al., 2010; Fraile et al., 2011), but is not a general rule
for plant pathogens (Torres-Barcelo et al., 2010; Mundt, 2014).

At a larger scale, we assumed that the relative frequencies of
the nonadapted and resistance-breaking variants arising from
crops remained unchanged during their stay in the reservoir com-
partment, which was therefore considered to be selectively neu-
tral. This is clearly a baseline hypothesis, but little evidence is
available to affirm or refute it. Natural populations of wild host
plants are highly patchy, with many diverse genotypes of the
same species, and different environmental conditions between
populations (Zhan et al., 2015). Wild hosts are also the main
source of disease resistance in crops, and they contain a large
diversity of R genes and alleles. All these factors make strong
directional selection of one particular pathogen variant over
another unlikely. More generally, this point highlights the need
for further theoretical research at the agro-ecological interface
(Papa€ıx et al., 2015). Even more importantly, experiments at this
scale to compare deployment strategies in long-term experiments,
as advised by Burdon et al. (2014), are required to test current
theoretical models, although such experiments are notoriously
difficult. Finally, our findings suggest that benefits should be
expected from both high-technology solutions facilitating R-gene
stacking and low-technology solutions promoting diversity or
landscaping in agrosystems. The combination of these
approaches may provide added value.
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Supporting Information

Additional Supporting Information may be found online in the
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Fig. S1 Cultivar landscape and pathotypes frequencies associated
to Fig. 3.

Fig. S2 Damage reduction achieved with mosaic and pyramiding
strategies with two resistances genes.

Fig. S3 Cultivar landscape and pathotypes frequencies associated
to Fig. S2.

Fig. S4 Classification tree modelling the performance difference
between simple and optimal mosaic strategies (MoS vs MoS*)
for an increasing number of R cultivars (1, 2, 3 and 5).

Fig. S5 Regression tree modelling the performance difference
between the uniform mosaic (MoS*) and the optimal variable
mosaic (vMoS*) strategies.

Table S1 Pathotypes coexistence frequencies with two resistance
genes

Table S2 Pathotypes coexistence frequencies with three resis-
tances genes

Table S3 Sensitivity indices for the relative damage obtained
with optimal uniform pyramiding (PyS*) and optimal uniform
mosaic (MoS*) strategies for the deployment of two and three
resistance genes

Notes S1 General model formulation with nc ≥ 2 monogenic
cultivars.

Notes S2 Derivation of the mutation-selection balance matrix.
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