Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu INRA logo partenaire

UR 1264 - MYCSA : Mycologie et securite des aliments


Mycologie & Sécurité des Aliments
INRA Bordeaux-Aquitaine
BP 81
33883 Villenave d'Ornon Cedex

Rat feeding trials: A comprehensive assessment of contaminants in both genetically modified maize and resulting pellets

02 October 2018

GM-Maize contaminants
Our new article published in Food and Chemical Toxicology

Chéreau S., Rogowsky P., Laporte B., Coumoul X., Moing A., Priymenkoc N., Steinberg P., Wilhelm R., Schiemann J., Salles B., Richard-Forget F. (2018). Rat feeding trials: A comprehensive assessment of contaminants in both genetically modified maize and resulting pellets. Food and Chemical Toxicology 121: 573–582.

Open access before November 20, 2018:

Abstract :

We analyzed a comprehensive set of contaminants in MON810 and NK603 genetically modified (GM) maize, and their non-GM counterparts, used in a rat feeding study (the GMO90 + project). Both the maize grains and the manufactured pellets were characterized. Only minor differences in contaminant levels between GM and corresponding non-GM harvests were evidenced. Fumonisin and deoxynivalenol mycotoxins were the pollutants present in the highest amounts, with concentrations that were however largely below acceptance reference values. Our data reporting slightly lower levels of fumonisin in MON810 compared to its non-GM counterpart corroborate the lower susceptibility of insect resistant Bt maize to fumonisin-producing fungi. Traces of glyphosate (0.016 mg/kg) were evidenced in grains from NK603 treated crops. Regarding the pellets, analysis of more than 650 potentially toxic substances revealed low amounts of various mycotoxins, pesticides and heavy metals. Concentrations of contaminants quantified in the pellets were however far below the maximum level of residues values set by regulatory agencies, and no substantial differences in contaminants between GM and non-GM pellets were observed. Moreover, when comparing the contamination status of grains and pellets, we demonstrate yet again that characterizing the grains is actually not sufficient to foresee the quality of the produced pellets.