En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Logo Biogeco Logo Université de Bordeaux

Nouveau site web Biogeco

Soutenance de thèse

Soutenance de thèse
Charlie Pauvert soutiendra ses travaux de thèse le 12 novembre -14h – bât B5, Amphithéâtre GABA, Pessac Comparaison et évaluation d’approches bioinformatiques et statistiques pour l'analyse du pathobiome des plantes cultivées.
Photo thèse

Charlie Pauvert : 12 novembre -14h – bât B5, Amphithéâtre GABA, Pessac
Comparaison et évaluation d’approches bioinformatiques et statistiques pour l'analyse du pathobiome des plantes cultivées.
Les interactions entre micro-organismes sous-tendent de nombreux services écosystémiques, y compris la régulation des maladies des plantes cultivées. Un acteur de cette régulation est le pathobiome, défini comme le sous-ensemble des micro-organismes associés àune plante hôte en interaction avec un agent pathogène. L'un des défis actuels consiste à reconstruire les pathobiomes à partir de données de metabarcoding, pour identifier des agents potentiels de biocontrôle et pour surveiller en temps réel leurs réponses aux changements environnementaux [A1]. Plusieurs verrous méthodologiques doivent cependant être levés pour atteindre ces objectifs. Tout d’abord, il n’existe pas de consensus concernant l’approche bioinformatique la plus fiable pour déterminer l’identité et l’abondance des micro-organismes présents dans les échantillons végétaux. De plus, les réseaux microbiens construits avec les méthodes actuellement disponibles sont des réseaux d’associations statistiques entre des comptages de séquences, non directement superposables aux réseaux d’interactions (ex: compétition, parasitisme) entre micro-organismes. L’objectif de la thèse était donc de déterminer les approches bioinformatiques et statistiques les plus pertinentes pour reconstruire des réseaux d’interactions microbiennes à partir de données de metabarcoding.Le modèle d’étude était la vigne (Vitis viniferaL. cv. Merlot noir) et l’oïdium de la vigne, Erysiphe necator. Nous avons tout d’abord déterminé l’approche bioinformatique la plus adaptée pour identifier la communauté fongique associée à ce pathogène, en comparant la capacité de 360 pipelines à retrouver la composition d’une communauté artificielle de 189 souches fongiques. DADA2 est apparu comme l’outil le plus performant [P1]. Nous avons ensuite évalué l’influence de la pratique culturale (viticulture conventionnelle vs. biologique) sur les communautés fongiques des feuilles et évalué le niveau de réplicabilité des réseaux microbiens construits avec une méthode d’inférence classique, SparCC. La réplicabilité était très faible, jetant ainsi un doute sur l’utilité de ces réseaux pour le biocontrôle et la biosurveillance [P2]. Nous avons donc utilisé une nouvelle approche statistique, le modèle PLN, qui permet de prendre en compte la variabilité environnementale,pour explorer finement le pathobiome d’Erysiphe necator. Les interactions microbiennes prédites par le modèle sont en cours de comparaison avec les résultats d’expériences de co-cultures [P3]. Une approche alternative, HMSC, a également été testée sur un autre modèle biologique et certaines prédictions ont été confrontées avec succès aux données de la littérature [A2]. Les réseaux microbiens, sous réserve d’amélioration des méthodes de reconstruction, pourraient donc être utilisés pour capturer les signaux des interactions biotiques dans le pathobiome.