En naviguant sur notre site vous acceptez l'installation et l'utilisation des cookies sur votre ordinateur. En savoir +

Menu Logo Principal

St Pee

Aquapôle INRA

Inra Bordeaux-Aquitaine
Quartier Ibarron
64310 Saint-Pée-sur-Nivelle

tél : +33 (0) 5 59 51 59 51
fax : +33 (0) 5 59 54 51 52

Lucie Marandel


Lucie Marandel
© inra, 2016
Epigenetic regulations induced by nutrients : understanding the glucose-intolerant phenotype in rainbow trout


UMR1419 NuMeA (Nutrition, Metabolism and Aquaculture)
Quartier Ibarron
64310 St Pée-sur-Nivelle, France
Tel : +33 (0)5 59 51 59 81
Fax: +33 (0)5 59 54 51 52
Courriel : lucie.marandel@inra.fr
Research gate profil: https://www.researchgate.net/profile/Lucie_Marandel

Research activity

Cursus and training

  • 2014-present: Research scientist, INRA, UMR 1419 NUMEA, France.
  • 2012-2014: Postdoctoral Research Assistant, Diagenode, Liège, Belgique. Marie Curie fellowship, Initial Training Network INGENIUM.
  • 2011: PhD in Biology, UR 1037 LPGP, INRA & Université Rennes I, Rennes, France. Caractérisation des gènes pou2, nanog, c-myc et sox2 au cours du développement embryonnaire chez Carassius auratus.
  • 2008 : Agronomical engineer, Ecole Nationale Supérieure Agronomique de Rennes, France
  • 2008: Master in Biology, Animal Physiology and Quality, Rennes I university, France.

Current research topics

In the context of the replacement of fish meal by inclusion of alternative terrestrial plant products in aquafeed formula, digestible carbohydrates represent good candidates. However, when fish meal is substituted at more than 20% by digestible carbohydrates, rainbow trout (Oncorhynchus mykiss) displays a persistent postprandial hyperglycemia defining it as a glucose-intolerant species. Indeed, rainbow trout belongs to a high trophic level and is thus considered as a strict carnivorous species metabolically adapted for high catabolism of proteins (> 37%) and low utilization of dietary carbohydrates. Hepatic gluconeogenesis in trout, the metabolic pathway producing endogenous glucose to sustain vital function from mainly amino acids, is poorly, if ever, regulated by carbohydrates, suggesting that this metabolic pathway is involved in the establishment of the glucose-intolerant phenotype. In the context of pathologies affecting the glucose homeostasis like diabetes, epigenetic changes occur at the overall genome level, but also at the gluconeogenic genes loci level associated with an increase in their expression and an endogenous glucose production in the liver.
In this context, my main working hypothesis is that changes in the hepatic epigenetic landscape induced by dietary carbohydrates at the global level and at the gluconeogenic genes loci may be involved in the maintenance of endogenous glucose production in rainbow trout fed a high carbohydrate diet. To explore this hypothesis, I particularly pay attention to explore the whole complexity of the rainbow trout genome. Indeed, an additional whole genome duplication event occurred at the base of the radiation of the salmonid fish, resulting in duplicated copies of many single-copy human genes. These duplicated genes are, in principle, available for the evolution of new functions that could drive the origin of novelties and thus contribute to the diversification of life on Earth. They are thus all highly important to consider to better understand original phenotypes such as the glucose-intolerant phenotype in trout.
My work thus revolves around three objectives: 1) understand the role of duplicated gluconeogenic genes in the establishment of the glucose-intolerance phenotype and their regulation by dietary carbohydrates, 2) study the global epigenetic changes induced by dietary carbohydrates and their underlying mechanisms, and 3) study the nutritional programming as a strategy to improve the use of dietary carbohydrates via the modulation of the global epigenome and the gluconeogenesis pathway.


  • Master 1 « Sciences et technologies de l'agriculture, de l'alimentation et de l'environnement » (Université de Pau et des Pays de l’Adour, Anglet) : Genome and environment (30h) – Open in september 2017


  • Marandel, L., Lepais, O., Arbenoits, E., Véron, V., Dias, K., Zion, M., Panserat, S. (2016). Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout (Oncorhynchus mykiss) by nutritional status and dietary carbohydrates. Scientific Reports 6, 32187. DOI : 10.1038/srep32187
  • Bobe, J., Marandel, L., Panserat, S., Boudinot, P., Berthelot, C., Quillet, E., Volff, J.N., Genêt, C., Jaillon, O., Roest Crollius, H., Guiguen Y. (2016). The rainbow trout genome, an important landmark for aquaculture and genome evolution. Genomics in Aquaculture, p.21-43, 1st Edition, MacKenzie S. and Jentoft S., Academic Press.
  • Marandel, L., Véron, V., Surget, A., Plagnes- Juan, E., Panserat, S. (2016). Glucose metabolism ontogenesis in rainbow trout (Oncorhynchus mykiss) in the light of the recently sequenced genome: new tools for intermediary metabolism programming. Journal of Experimental Biology, 219 (5), 734-743. DOI : 10.1242/jeb.134304
  • Marandel, L., Dai, W. W., Panserat, S., Skiba-Cassy, S. (2016). The five glucose-6-phosphatase paralogous genes are differentially regulated by insulin alone or combined with high level of amino acids and/or glucose in trout hepatocytes. Molecular Biology Reports, 43 (4), 207-211. DOI : 10.1007/s11033-016-3962-6
  • Marandel, L., Seiliez, I., Véron, V., Skiba Cassy, S., Panserat, S. (2015). New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (Oncorhynchus mykiss): a gene duplication trail. Physiological Genomics, 47 (7), 253-263. DOI : 10.1152/physiolgenomics.00026.2015
  • Seiliez, I., Froehlich, J. M., Marandel, L., Gabillard, J.-C., Biga, P. R. (2015). Evolutionary history and epigenetic regulation of the three paralogous pax7 genes in rainbow trout. Cell and Tissue Research, 359 (3), 715-727. DOI : 10.1007/s00441-014-2060-0
  • Marandel, L., Labbé, C., Bobe, J., Jammes, H., Lareyre, J.-J., Le Bail, P.-Y. (2013). Do not put all teleosts in one net: focus on the sox2 and pou2 genes. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 164, 69-79. DOI : 10.1016/j.cbpb.2012.10.005
  • Marandel, L., Labbé, C., Bobe, J., Le Bail, P.-Y. (2012). Evolutionary history of c-myc in teleosts and characterization of the duplicated c-myca genes in goldfish embryos. Molecular Reproduction and Development, 79 (2), 85-96. DOI : 10.1002/mrd.22004
  • Marandel, L., Labbé, C., Bobe, J., Le Bail, P.-Y. (2012). nanog 5'-upstream sequence, DNA methylation, and expression in gametes and early embryo reveal striking differences between teleosts and mammals. Gene, 492, 130-137. DOI : 10.1016/j.gene.2011.10.037
  • Depince, A., Marandel, L., Goardon, L., Le Bail, P.-Y., Labbé, C. (2011). Trout coelomic fluid suitability as Goldfish oocyte extender can be determined by a simple turbidity test. Theriogenology, 75 (9), 1755-1761. DOI : 10.1016/j.theriogenology.2010.12.022